

Vacancies as dopants in high-temperature superconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys.: Condens. Matter 1 9451 (http://iopscience.iop.org/0953-8984/1/47/014)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 10/05/2010 at 21:07

Please note that terms and conditions apply.

Vacancies as dopants in high-temperature superconductors

Brent A Richert and Roland E Allen

Center for Theoretical Physics, Department of Physics, Texas A&M University, College Station, Texas 77843, USA

Received 3 January 1989, in final form 8 August 1989

Abstract. The shift in the Fermi energy $E_{\rm F}$ and the modification of the density of states $\rho(E)$ have been calculated for oxygen vacancies in La_{1.85}Sr_{0.15}CuO_{4-y} and YBa₂Cu₃O_{7-y} and for lanthanum vacancies in La_{2-x}CuO₄. Oxygen vacancies are found to act as donors in every case, and La vacancies as acceptors. These conclusions are in accord with the well known observations that oxygen vacancies decrease $T_{\rm c}$, and with the suggestion that the superconductivity of nominally pure La₂CuO₄ could be due to La vacancies.

The discovery of high-temperature copper oxide superconductors [1, 2] has led to many investigations of the structure and properties of these materials. Stoichiometry has been found to play a critical role in several different respects.

The transition temperature of $La_{2-x}M_xCuO_4$ is optimised by doping with Sr at x = 0.15, yielding $T_c \approx 38$ K [3]. The superconducting properties are highly sensitive to the oxygen content, with the highest T_c resulting from full oxygen occupancy [3, 4]. Excess Sr doping with x > 0.15 apparently leads to charge compensation through the formation of oxygen vacancies, with a depression of T_c [4–6]. Annealing under high oxygen pressure suppresses the formation of oxygen vacancies, and allows superconductivity at $T_c \approx 36$ K in $La_{2-x}Sr_xCuO_4$ up to x = 0.24 [7]. However, the transition temperature decreases for x > 0.24, with no superconductivity observed beyond x = 0.32, although metallic conductivity persists [7].

The undoped material La_2CuO_4 exhibits superconductivity of a filamentary nature. The small volume fraction (much less than 1%) of the superconducting region was attributed to either excess oxygen or lanthanum vacancies within the material [8]. The lanthanum-deficient material $La_{2-x}CuO_4$ shows a sharper resistive transition and a greater diamagnetic susceptibility than the nominal La_2CuO_4 superconductor [9], indicating that La vacancies can indeed contribute to the superconductivity.

The 93 K superconductor YBa₂Cu₃O₇ is found to have an orthorhombic structure characterised by planes of CuO₂ stacked with one-dimensional chains of CuO [10– 14]. A high-temperature orthorhombic-to-tetragonal phase transition near 700 °C in YBa₂Cu₃O₇ is found to be an order–disorder transition in which the O(1) oxygen atoms in the CuO chains are disordered onto the normally vacant adjacent sites [15]. A decrease in the oxygen stoichiometry is found to introduce vacancies on the same O(1) chain sites [16]. These oxygen vacancies lead to a depression of T_c from above 90 K to about 55 K for $0.1 \le y \le 0.5$, and a loss of the superconductivity and even metallic conductivity for y > 0.5 [17, 18].

Here we consider the changes in electronic structure that result from vacancies in these original copper oxide superconductors, using a tight-binding model that was developed to study such effects [19]. We neglect local strains and the small changes in the lattice constants that occur as vacancies are introduced. For simplicity, we use the BCT structure [20] for $La_{1.85}Sr_{0.15}CuO_4$, neglecting the small orthorhombic distortion that doubles the unit cell below 200 K [21]. For YBa₂Cu₃O₇, the observed orthorhombic structure [10] is used. The change in the density of states is computed with a standard Green's function technique.

The unperturbed Green's function has the spectral representation

$$G_0(E) = \sum_{k,n} w_k \frac{\psi(k,n)\psi^{\dagger}(k,n)}{E - E(k,n) + \mathrm{i}\delta}$$
(1)

where $E(\mathbf{k}, n)$ and $\psi(\mathbf{k}, n)$ are the electronic energy and wavefunction (in a tight-binding representation) for the *n*th band and one of the *N* sample wavevectors \mathbf{k} (with weight w_k) within the irreducible part of the Brillouin zone. In the present calculations, N = 24 for the BCT structure and 64 for the orthorhombic. A finite value $\delta = 0.2$ eV was used to smooth the results. The local density of states for both spins is given by

$$o_0(E) = -(2/\pi) \operatorname{Tr} \operatorname{Im} G_0(E)$$
 (2)

where Tr indicates a trace over those orbitals associated with a given site. For an isolated vacancy, the change in the density of states is given by [22, 23]

$$\Delta \rho(E) = -(2/\pi)(\partial/\partial E) \operatorname{Im} \log \operatorname{Det} G_0^{\operatorname{sub}}(E)$$

= -(2/\pi)(\delta/\delta E) \tan^{-1} (\operatorname{Im} \operatorname{Det} G_0^{\operatorname{sub}}(E)/\operatorname{Re} \operatorname{Det} G_0^{\operatorname{sub}}(E)) (3)

where G_0^{sub} refers to the subspace of states associated with the vacancy site. The Fermi energy E_F is calculated by integrating the total density of states up to the number of valence electrons for a given concentration of vacancies.

We consider both oxygen sites in La_{1.85}Sr_{0.15}CuO₄ (with O(1) in the CuO₂ planes and O(2) in the LaO layer), and the chain site O(1) in YBa₂Cu₃O₇. The calculation neglects the interaction between vacancies. However, for y = 1 we have performed an independent calculation with one oxygen vacancy per formula unit, and the change in the density of states is approximately the same.

Figure 1 shows the change in the density of states $\Delta\rho(E)$ for a single oxygen vacancy in La_{1.85}Sr_{0.15}CuO_{4-y}. Notice that $\Delta\rho$ has more structure near the Fermi energy for the O(1) site than for the O(2) site, because of the strong pd σ interactions of O(1) p orbitals with copper d orbitals [19]. For both sites, $\Delta\rho$ is negative at the unperturbed Fermi energy. As can be seen in table 1, the density of states at E_F is smaller than the y = 0.0value for $y \leq 0.5$, and E_F monotonically increases for $y \leq 1.0$. Oxygen vacancies thus behave as donors, filling the hole states near the Fermi energy.

For vacancies on the O(2) site, table 1 indicates that $\rho(E_F)$ is smaller than the y = 0.0 value for all y > 0. The Fermi energy increases somewhat faster for O(2) vacancies, since the more ionic character of the Cu–O(2) bond [19] leaves most of the O(2) states below E_F . These oxygen vacancies are again electron donors.

The change in the density of states of $La_{2-x}CuO_4$ for a single La vacancy is shown in figure 2. The large contribution near $\approx 5 \text{ eV}$ arises from the unoccupied La d bands. As can be seen table 1, E_F is lowered. Lanthanum vacancies thus donate holes to the

Figure 1. Change in density of states for an isolated oxygen vacancy in $La_{1.85}Sr_{0.15}CuO_{4-y}$. Oxygen site O(1) is in the CuO₂ plane, and O(2) in the La/Sr layer. The zero of energy is the unperturbed Fermi energy $E_{\rm F}^0$ of $La_{1.85}Sr_{0.15}CuO_4$.

Table 1. The shift in E_F and density of states for y oxygen vacancies per formula unit. (a) SiteO(1) in $La_{1.85}Sr_{0.15}CuO_{4-y}$. (b) Site O(2) in $La_{1.85}Sr_{0.15}CuO_{4-y}$. (c) The La site in $La_{2-x}CuO_4$.(d) Site O(1) in YBa₂Cu₃O_{7-y}.

(<i>a</i>)	у	$\Delta E_{\rm F}$ (eV)	$ ho(E_{ m F})$ (states eV ⁻¹ /cell)	(<i>b</i>)	у	$\Delta E_{\rm F}$ (eV)	$ ho(E_{ m F})$ (states eV ⁻¹ /cell)
	0.0	0.00	1.9		0.0	0.00	1.9
	0.1	0.07	1.3		0.1	0.12	1.3
	0.2	0.20	0.73		0.2	0.31	0.74
	0.3	0.44	0.61		0.3	0.60	0.60
	0.4	0.65	1.0		0.4	0.87	0.90
	0.5	0.76	1.5		0.5	1.03	1.4
	0.6	0.83	2.0		0.6	1.14	1.8
	0.7	0.88	2.3		0.7	1.26	1.5
	0.8	0.93	2.3		0.8	1.41	0.94
	0.9	0.97	2.3		0.9	1.66	0.63
	1.0	1.01	2.3		1.0	1.94	0.82
			· · · · ·				
		$\Delta E_{\rm F}$	$\rho(E_{\rm F})$			$\Delta E_{\rm F}$	$\rho(E_{\rm F})$
(<i>c</i>)	x	$\Delta E_{\rm F}$ (eV)	$ ho(E_{ m F})$ (states eV ⁻¹ /cell)	(<i>d</i>)	у	$\Delta E_{\rm F}$ (eV)	$ ho(E_{ m F})$ (states eV ⁻¹ /cell)
(c)	<i>x</i>	$\frac{\Delta E_{\rm F}}{({\rm eV})}$	$\rho(E_{\rm F})$ (states eV ⁻¹ /cell) 1.4	(<i>d</i>)	<i>y</i> 0.0	$\frac{\Delta E_{\rm F}}{({\rm eV})}$	$\frac{\rho(E_{\rm F})}{({\rm states \ eV^{-1}/cell})}$
(c)	x 0.0 0.1	$ \begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline 0.00 \\ -0.11 \end{array} $	$\rho(E_{\rm F})$ (states eV ⁻¹ /cell) 1.4 1.9	(d)	y 0.0 0.1	$\Delta E_{\rm F}$ (eV) 0.00 0.01	$\frac{\rho(E_{\rm F})}{({\rm states \ eV^{-1}/cell})}$ 3.2 3.1
(c)	x 0.0 0.1 0.2	$\Delta E_{\rm F}$ (eV) -0.00 -0.11 -0.20	$\rho(E_{\rm F})$ (states eV ⁻¹ /cell) 1.4 1.9 1.9	(d)	y 0.0 0.1 0.2	$\Delta E_{\rm F}$ (eV) 0.00 0.01 0.03	$ \begin{array}{c} \rho(E_{\rm F}) \\ (states eV^{-1}/cell) \\ \hline 3.2 \\ 3.1 \\ 3.0 \end{array} $
(c)	x 0.0 0.1 0.2 0.3		$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ \hline 1.4 \\ 1.9 \\ 1.9 \\ 1.7 \\ \hline$	(d)	y 0.0 0.1 0.2 0.3	$ \Delta E_{\rm F} (eV) 0.00 0.01 0.03 0.05 0.05 0 $	$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ \hline 3.2 \\ 3.1 \\ 3.0 \\ 2.8 \\ \hline$
(c) 	x 0.0 0.1 0.2 0.3 0.4	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ -0.11 \\ -0.20 \\ -0.29 \\ -0.42 \end{array}$	$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ \hline 1.4 \\ 1.9 \\ 1.9 \\ 1.7 \\ 1.2 \\ \hline$	(d)	y 0.0 0.1 0.2 0.3 0.4	$ \Delta E_{\rm F} (eV) 0.00 0.01 0.03 0.05 0.07 0.07 $	$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ \hline 3.2 \\ 3.1 \\ 3.0 \\ 2.8 \\ 2.7 \\ \hline$
(c) 	x 0.0 0.1 0.2 0.3 0.4 0.5	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ -0.11 \\ -0.20 \\ -0.29 \\ -0.42 \\ -0.56 \end{array}$	$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ \hline 1.4 \\ 1.9 \\ 1.9 \\ 1.7 \\ 1.2 \\ 1.2 \\ 1.2 \\ \hline$	(d)	y 0.0 0.1 0.2 0.3 0.4 0.5	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.10 \end{array}$	$\rho(E_{\rm F}) ({\rm states \ eV^{-1}/cell})$ 3.2 3.1 3.0 2.8 2.7 2.4
(c)	x 0.0 0.1 0.2 0.3 0.4 0.5	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ -0.11 \\ -0.20 \\ -0.29 \\ -0.42 \\ -0.56 \end{array}$	$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ 1.4 \\ 1.9 \\ 1.9 \\ 1.7 \\ 1.2$	(d)	y 0.0 0.1 0.2 0.3 0.4 0.5 0.6	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.10 \\ 0.13 \end{array}$	$\rho(E_{\rm F}) $ (states eV ⁻¹ /cell) 3.2 3.1 3.0 2.8 2.7 2.4 2.2
(c)	x 0.0 0.1 0.2 0.3 0.4 0.5	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ -0.11 \\ -0.20 \\ -0.29 \\ -0.42 \\ -0.56 \end{array}$	$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ 1.4 \\ 1.9 \\ 1.9 \\ 1.7 \\ 1.2$	(d)	y 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.10 \\ 0.13 \\ 0.16 \end{array}$	$\rho(E_{\rm F}) ({\rm states \ eV^{-1}/cell})$ 3.2 3.1 3.0 2.8 2.7 2.4 2.2 2.0
(c)	x 0.0 0.1 0.2 0.3 0.4 0.5	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ -0.11 \\ -0.20 \\ -0.29 \\ -0.42 \\ -0.56 \end{array}$	$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ 1.4 \\ 1.9 \\ 1.9 \\ 1.7 \\ 1.2$	(d)	y 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.10 \\ 0.13 \\ 0.16 \\ 0.21 \\ \end{array}$	$\rho(E_{\rm F}) ({\rm states \ eV^{-1}/cell})$ 3.2 3.1 3.0 2.8 2.7 2.4 2.2 2.0 1.8
(c)	x 0.0 0.1 0.2 0.3 0.4 0.5	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ -0.11 \\ -0.20 \\ -0.29 \\ -0.42 \\ -0.56 \end{array}$	$\rho(E_{\rm F}) \\ ({\rm states \ eV^{-1}/cell}) \\ 1.4 \\ 1.9 \\ 1.9 \\ 1.7 \\ 1.2$	(d)	y 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	$\begin{array}{c} \Delta E_{\rm F} \\ ({\rm eV}) \\ \hline \\ 0.00 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.10 \\ 0.13 \\ 0.16 \\ 0.21 \\ 0.26 \end{array}$	$\rho(E_{\rm F}) ({\rm states \ eV^{-1}/cell})$ 3.2 3.1 3.0 2.8 2.7 2.4 2.2 2.0 1.8 1.6

material, just as divalent Sr does when substituted for trivalent La. This could explain the occurrence of superconductivity in La₂CuO₄, in that deficiencies of La within the undoped material can provide the required hole carriers. In our calculations, there is an increase in $\rho(E_F)$ for $x \le 0.3$.

Figure 2. Change in density of states for a lanthanum vacancy in $La_{2-x}CuO_4$.

Figure 3. Change in density of states for a single oxygen vacancy on the O(1) chain site in YBa₂Cu₃O_{7-y}.

We now consider the electronic effects of oxygen vacancies in YBa₂Cu₃O₇. The change in the density of states of YBa₂Cu₃O_{7-y} for an isolated oxygen vacancy introduced on the O(1) site is shown in figure 3. As the number of oxygen vacancies y increases, $\rho(E_F)$ decreases monotonically. Table 1 shows the calculated shifts in E_F and $\rho(E_F)$ for $0.0 \le y \le 1.0$. The removal of oxygen monotonically raises the Fermi level, so the present calculation confirms the expectation that oxygen vacancies act as electron donors in this system. The decrease in the density of states at E_F is consistent with shifts of the valence bands seen experimentally in photoemission studies of oxygen-deficient YBa₂Cu₃O_{7-y} [24].

Since the charge carriers in both $La_{2-x}Sr_xCuO_4$ and $YBa_2Cu_3O_7$ are holes [25, 17], the present results are consistent with the large body of experimental studies showing that oxygen vacancies degrade the superconducting T_c and even the metallic conductivity.

Acknowledgments

We thank the Office of Naval Research for supporting this work under Grant No N00014-89-J-1088. Additional support was provided by the Robert A Welch Foundation. BAR was partially supported by the US Air Force Institute of Technology.

References

- [1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
- [2] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908

- [3] Tarascon J M, Greene L H, McKinnon W R, Hull G W and Geballe T H 1987 Science 235 1373
- [4] van Dover R B, Cava R J, Batlogg B and Rietman E A 1987 Phys. Rev. B 35 5337
- [5] Smedskjaer L C, Routbort J L, Flandermeyer B K, Rothman S J, Legnini D G and Baker J E 1987 Phys. Rev. B 36 3903
- [6] Shafer M W, Penney T and Olson B L 1987 Phys. Rev. B 36 4047
- [7] Torrance J B, Tokura Y, Nazzal A I, Bezinge A, Huang T C and Parkin S S P 1988 Phys. Rev. Lett. 61 1127
- [8] Grant P M, Parkin S S P, Lee V Y, Engler E M, Ramirez M L, Vazquez J E, Lim G, Jacowitz R D and Greene R L 1987 Phys. Rev. Lett. 58 2482
- [9] Fine S M, Greenblatt M, Simizu S and Friedberg S A 1987 Phys. Rev. B 36 5716
- [10] Beno M A, Soderholm L, Capone II D W, Hinks D G, Jorgensen J D, Grace J D, Schuller I K, Segre C U and Zhang K 1987 Appl. Phys. Lett. 51 57
- [11] Siegrist T, Sunshine S, Murphy D W, Cava R J and Zahurak S M 1987 Phys. Rev. B 35 7137
- [12] LePage Y, McKinnon W R, Tarascon J M, Greene L H, Hull G W and Hwang D M 1987 Phys. Rev. B 35 7245
- [13] Greedan J E, O'Reilly A H and Stager C V 1987 Phys. Rev. B 35 8770
- [14] Capponi J J, Chaillout C, Hewat A W, Lejay P, Marezio M, Nguyen N, Raveau B, Soubeyroux J L, Tholence J L and Tournier R 1987 Europhys. Lett. 3 1301
- [15] Jorgensen J D, Beno M A, Hinks D G, Soderholm L, Volin K J, Hitterman R L, Grace J D, Schuller I K, Segre C U, Zhang K and Kleefisch M S 1987 Phys. Rev. B 36 3608
 - Jorgensen J D, Veal B W, Kwok W K, Crabtree G W, Umezawa A, Nowicki L J and Paulikas A P 1987 *Phys. Rev.* B **36** 5731
- [16] Beech F, Miraglia S, Santoro A and Roth R S 1987 Phys. Rev. B 35 8778
- [17] Tarascon J M, McKinnon W R, Greene L H, Hull G W and Vogel E M 1987 Phys. Rev. B 36 226
 Wang Z Z, Clayhold J, Ong N P, Tarascon J M, Greene L H, McKinnon W R and Hull G W 1987 Phys. Rev. B 36 7222
- [18] Cava R J, Batlogg B, Chen C H, Rietman E A, Zahurak S M and Werder D 1987 Phys. Rev. B 36 5719
- [19] Richert B A and Allen R E 1988 Phys. Rev. B 37 7869; 1989 J. Phys.: Condens. Matter 1 9893
- [20] Jorgensen J D, Schuttler H-B, Hinks D G, Capone II D W, Zhang K, Brodsky M B and Scalapino D J 1987 Phys. Rev. Lett. 58 1024
- [21] Fleming R M, Batlogg B, Cava R J and Rietman E A 1987 Phys. Rev. B 35 7191 Cava R J, Santoro A, Johnson D W Jr amd Rhodes W W 1987 Phys. Rev. B 35 6716
- [22] DeWitt B S 1956 Phys. Rev. 103 1565
- [23] Toulouse G L 1966 Solid State Commun. 4 593
- [24] Stoffel N G, Tarascon J M, Chang Y, Onellion M, Niles D W and Margaritondo G 1987 Phys. Rev. B 36 3986
- [25] Ong N P, Wang Z Z, Clayhold J, Tarascon J M, Greene L H and McKinnon W R 1987 Phys. Rev. B 35 8807
 - Uchida S, Takagi H, Yanagisawa H, Kishio K, Kitazawa K, Fueki K and Tanaka S 1987 Japan. J. Appl. Phys. 26 L445